

Fundamentos para el Controle

MONITORAMENTO

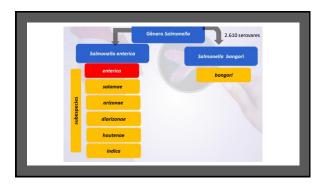
LOS PRINCIPALES
OBJETIVOS DE UNA
INVESTIGACIÓN
EPIDEMIOLÓGICA
SON:

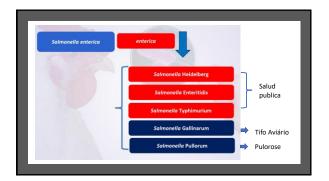
1) Identificar y estudiar el agente responsable
(serovares)
2) Encuentra la fuente de infección
3) Formular recomendaciones para prevenir
la transmisión y (re)contaminación

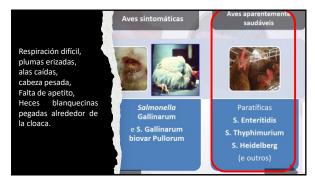
ACCIÓN CONJUNTA E INTEGRADA (CADENA)

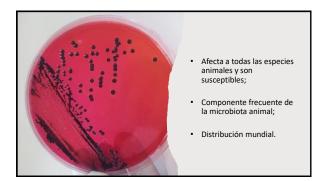
Implementación de controles en todas las etapas de la cadena de producción

- productores,


- Matadero


- agencias gubernamentales


- instituciones de investigación para actualizar sus procedimientos para evaluar los riesgos relacionados con la seguridad alimentaria.

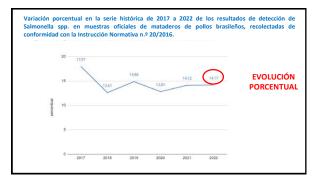

detección de microorganismos potenciales antes de llegar al consumidor (producto/proceso)

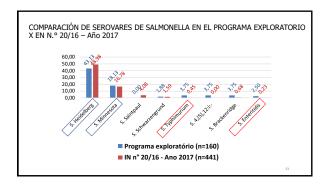
Programa Nacional de Sanidad Avícola (PNSA) Las principales enfermedades oficialmente controladas son: - Gripe aviar en línea con el Código - Enfermedad de Newcastle Sanitario para los Animales Terrestres, SALMONELOSIS: S.Gallinarum, S.Pullorum, S.En de la Organización teritidis, S. Typhimurium Mundial de Sanidad Micoplasmosis: Mycoplasma gallisepticum, Animal (OMSA) M.synoviae y M.melleagridis (pavos)

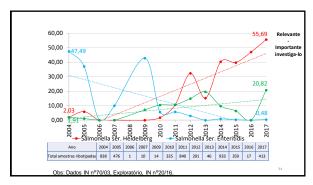
Programa de monitoramiento y control microbiológico de Salmonella spp. en canales de pollo y pavo

HISTORIA 2003: monitoramiento y control de Salmonella spp. en canales de pollo/pavo – IN 70, 2003.

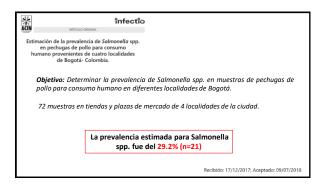
2016: IN 20 de 2016, que determinó el control y monitoramiento de Salmonella spp. en TODA la cadena productiva de pollo y pavo. Identificación de serovares de Salmonella sp. de gran relevancia para la salud pública.

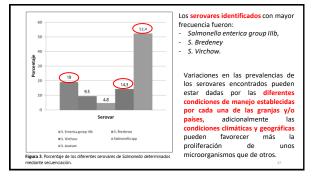

2022 – Sexto año de vigencia del IN20

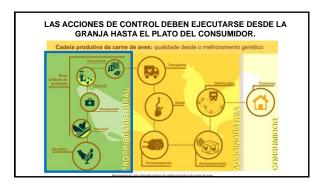

138 establecimientos = 135 pollos y gallinas + 2 pollos y pavos + 1 pavo

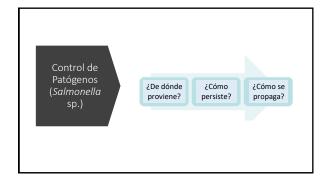

n = 2992 muestras (64 muestras de pavos + 2928 muestras de pollos)

La incidencia de Salmonella spp. fue: 14.17%
(415/2928) para pollos y gallinas


Y
0% (0/64) para pavos.

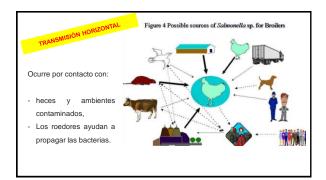


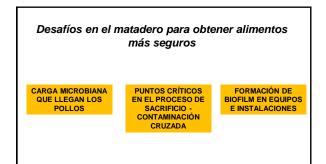




 Violación Del Ciclo De Monitoramiento Para El Control De Salmonella spp (matadero - cia):

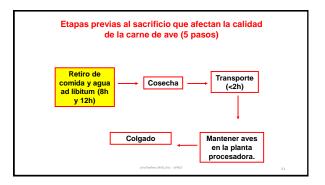
Acciones correctivas en el proceso:

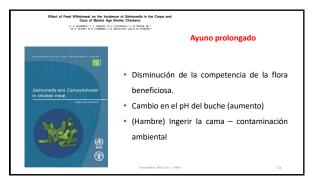

- identificar la causa de la infracción;
- revisar los programas de autocontrol;
- adoptar acciones correctivas y preventivas con el objetivo de restablecer el cumplimiento – CAMPO A INDUSTRIA.

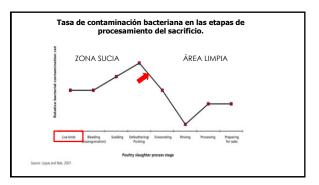


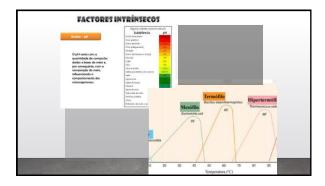
Prevención y control de factores primarios: Salmonella Paratífica 1. Calidad del agua 2. Gestión ambiental (ventilación, nebulización...) 3. Nutrición 4. Enfermedades respiratorias 5. Inmunosupresión (Marek, Gumboro, Anemia, Micotoxinas...) 6. Estrés (Densidad, Ambiente...) 7. Calidad intestinal (microftora y camada) 8. Vacio sanitario (intervalo entre lotes), limpieza y desinfección. 9. Manejo en la producción de huevos. 10. Higiene en el criadero/incubatório 11. Control integrado de plagas

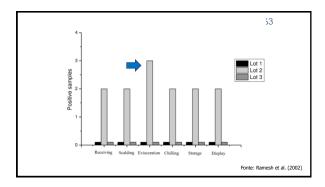
12. Contaminación inicial - pollo que llega ao matadero

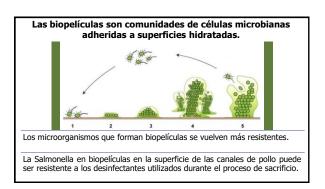


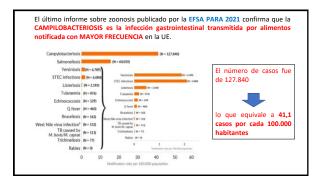




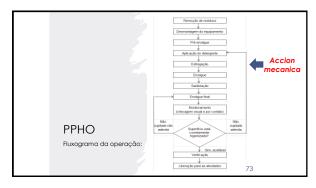








sinfectantes, pero siguen siendo una de las principales bact e enfermedades transmitidas por los alimentos.			
Parameter	Optimal growth	Growth inhibition	
Т	40-40 °C	< 30 ; > 45 °C]
рН	6,5-7,5	< 4,9 ; > 9,0]
O ₂	3-5 °C	> 10 %]
CO ₂	2-10 °C	-]
a _w	0,997	< 0,987]
NaCl	0,5 %	> 1,5 %	1


C. jejuni también se encuentra en biopelículas mixtas, prevalentes en la mayoría de los entornos; en estos casos, la bacteria actúa como colonizador secundario.

Las biopelículas ofrecen varias ventajas a C. jejuni, ya que facilitan el intercambio de genes, nutrientes, enzimas, etc.

Por lo tanto, las biopelículas representan un riesgo significativo debido a su CAPACIDAD PARA ALBERGAR microorganismos patógenos y facilitar su SUPERVIVENCIA.

PPHO PROCEDIMIENTO ESTÁNDAR DE HIGIENE OPERACIONAL Después del procesamiento, los equipos, utensilios, piso, paredes y ambiente presentan una alta carga de desechos, con un alto valor nutricional: una mezcla de proteínas, grasas y minerales. →Eliminación de residuos orgánicos y minerales de la aplicación de agentes higienizantes. →Por tanto, el procedimiento de higiene debe realizarse en dos etapas diferenciadas: limpieza e higienización.

PLAN DE ACCIÓN - Salmonella

Reforzar acciones en el Procedimiento Estándar de Higiene, intercambio de productos

Alternativas para controlar las biofilms de Salmonella en la industria alimentaria

ENZIMAS

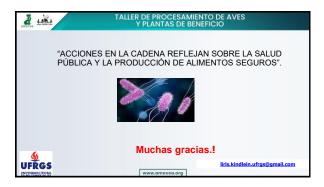
Las enzimas se consideran "sustancias químicas verdes" que no desarrollan tolerancia ni resistencia a los patógenos transmitidos por los alimentos y son completamente biodegradables.

(Meireles et al., 2016; Rudolph et al., 2018).

Las enzimas potencialmente pueden atacar y liberar la matriz de EPS de lo biofilm, alterando la integridad física de la matriz y liberando las células de la biopelícula.

Alternativas para controlar biofilmes na indústria alimentícia

Enzimas


No estudo de Iniguez Moreno et al. (2021), uma mistura de protease alcalina e a-amilase removeu 93 e 96% dos biofilmes de Salmonella formados em superfícies.

Avila et al. (2019) obtiveram uma remoção de cerca de 2,3 log UFC/cm² de células de biofilme de S. Typhimurium em superfície com uma mistura de enzimas (PROTEASE, LIPASE E AMILASE).

Análisis microbiológico para la validación de PPHO Toma de muestras en diversos sectores y equipos industriales

EN CONCLUSIÓN... Control de Salmonella/Campylobacter

- 1. La atención se centra en controlar (reducir la presión de la infección);
- 2. Control de la contaminación cruzada en el matadero
- 3. Acciones para prevenir la formación de biopelículas

